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Abstract 

The fourth-integral betatron resonance driven by sextupoles was studied on 
the electron storage ring Aladdin at SRe. The resonance feature of capturing 
the phase space particles in the resonance islands was clearly demonstrated. 
In a computer simulation, the finite beam size is simulated by multi-particle 
tracking and the decoherence of the betatron oscillation was shown to agree 
well with experiment observation. 

1 Introduction 

Nonlinear dynamic studies are conducted on the Aladdin electron storage ring at the 
Synchrotron Radiation Center, University of Wisconsin-Madison. To verify the theo­
retical prediction of the stability limitation of particle motion, we have experimentally 
studied the third-order resonances driven by sextupole components of the magnetic 
field [1], [2], [3]. Our study is now extended to the fourth-order resonance. 

• Work supported by U.S. Department of Energy, OfI1ce of Basic Energy Sciences under Contract 
No. W-31-109-ENG-38 



The fourth-integral resonance 

(1) 

can be driven either by the mth harmonic of the first-order effect of the octupole field 
or by the second-order effect of the sextupole field. The fourth-integral resonance 
is usually rather weak and does not lead to instabilities. The island feature of the 
resonance phase map can be obtained relatively easily in the below-resonance case. 

The fourth-integral resonance has been observed in the beam experiment in the 
Aladdin ring by adding an extra sextupole to excite the 29th harmonic. We found 
that particles captured in the resonance islands did not remain stable in the islands 
but diffused into the central region due to the quantum fluctuations from photon 
emission and other stochastic processes. 

This report presents the theoretical analysis of the fourth-integral resonance 
based on Hamiltonian dynamics. The measurement results are presented and com­
pared with computer simulations based on multi-particle tracking. The particle dif­
fusion from the phase-space island in the phase map will be presented in a separate 
report. 

2 Theoretical Analysis 

The theoretical analysis is based on Hamiltonian dynamics. We start with the Hamil­
tonian in terms of action-angle variables Ix and Jx near a fourth-integral resonance 
driven by the second-order sextupole effect, 

(2) 

h . d' .. h 1 h ri/2 Bill were Eo IS a qua rabc expreSSIOn m t e sextupo e strengt s s :S1f 73P and the 
coefficient a gives the amplitude-dependent tune shift. In addition to quadratic terms 
in 5, a also contains contributions from the quadrupole fringe field and the octupole 
field. The detailed derivation of this Hamiltonian is given in the Appendix A. 

In order to transform away the 8 dependence, we take the generating function 

m 1 
F(,x) J; 8) = J(,x - -8 + -cPo) 

4 4 

and transform the action-angle variables according to 

The new Hamiltonian then becomes 
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(3) 

(4) 

(5) 



where 
m 

C = v - - (6) x x 4 

is the separation of the tune from the resonant value. The Hamiltonian H now is 
a constant of motion. Figure 1 shows the Hamiltonian contours for the case below 
resonance, i.e. Cx < O. 
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Figure 1: Hamiltonian contour of the fourth-integral resonance at Cx = -0.003 with 
Co 12.563 m-1 and a = 296.527 m-1 

The resonance is characterized by four islands in the phase space. The fixed 
points are given by the equations, 

oH 
o(2J) = 0, oH = ° 0, . 

The following results are obtained, 
n71 ,= 4' (n = 0,1,2,3 ... ), 

(2J)1/2 = ( lex I ) 1/2 
a + 4co cos 4, 

When, = 0, ;, 71, and 3
2
7r, we have unstable fixed points 

(2J)~/2= ( Icxl )1/2, 
a + 4co 

and when, = ~, 3
4
7r, and 5

4
7r, we get stable fixed points 
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(7) 

(8) 

(9) 

(10) 



The island width is approximately given by 

w=( IExl )1/2{[1+( SEO )1/2]1/2_[1_( SEO )1/2]1/2}. (11) 
a - 4Eo a + 4Eo a + 4Eo 

For the case of small EO, we have 

(12) 

The Hamiltonian analysis describes an isolated nonlinear resonance and yields the 
basic resonance structure in the phase space. 

3 Experiment Measurement 

Aladdin is a I-GeV electron storage ring which is composed of four sectors. The 
principal parameters of Aladdin are given in Ref [3]. In normal operation, it stores 
15 beam bunches with a beam current of 150 rnA. For this experiment, only one 
beam bunch stored at 800 MeV is used and the other 14 bunches are knocked out 
by the RF knockout technique. One of the spare chromaticity correcting sextupoles 
is powered to excite the desired resonance. A pulsed-kicker magnet is then fired to 
kick the beam bunch horizontally to drive a coherent x oscillation. Two pairs of 
stripline-electrodes measure horizontal displacements of the beam centroid, Xl and 
X 2 , respectively. Since these two BPMs are separated about 90 0 in phase, we have 
approximately Px1 ex X 2 • If we know the beta functions f3x and the phase advance 
between locations 1 and 2, the displacements and slopes at location 1 can be precisely 
calculated. The details of the measurement arrangement as well as data processing 
are also given in Ref [3] for a previous SRC experiment. 

The resonance 4vx = 29 line is easily accessible. The operating tunes are rlloved 
close to the resonance by adjusting the quadrupoles manually. In the measurements, 
we powered a horizontal focusing sextupole SFI0, which is near the beginning of the 
fourth sector, to a strength of ~:l = -6 m-2 to excite the 29th harmonic. We took 
data for 4000 turns after firing the kicker. 

Figure 2 shows a typical set of measured data in the BPM units. One BPM unit 
is rv IS.9 mm within a precision of ±10% over a range of 12 mm. The horizontal 
phase space map Px versus X is plotted for different kick strength as labelled. The 
tune was set at Vx = 7.2492, just below the resonance. Due to the finite beam size, we 
are actually measuring the motion of the beam centroid. Particles in the beam bunch 
lose their coherence rather quickly because of the nonlinear tune shift. This makes 
it difficult to see the explicit resonance feature. The kicker magnet and the BPM Xl 
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are separated about 395 0 in phase advance. The first phase point is found in the third 
quadrant in phase plots, which indicates a pinging direction of the pulsed-kicker. 
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Figure 2: Experimentally measured phase map at Vx 7.2492 with sextupole strength 
~~l = -6.0 m-2 

Another set of measured data is shown in Figure 3 for the zero-amplitude tune 
Vx 7.2485. When the kick increases from a smaller to a larger value as labelled in the 
pictures, we obtained different maps. In Figure 3( a) most of the particles were kicked 
just inside the separatrix; some particles are captured by the resonance island but 
most were located inside the central stable region. Thus the beam centroid precesses 
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counter-clockwise initially. Figure 3(b) shows when more particles were kicked into 
the island. In Figure 3 (c) with an even larger kick, most particles were kicked over 
the island and end up on the outside. Only a small amount were trapped inside the 
islands. This was somewhat similar to the first case except that the beam centroid 
initially precesses in the reverse (clockwise) direction. When nearly all the particles 
were kicked outside of the island, the beam centroid smeared into the central region 
as shown in Figure 3( d). 
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Figure 3: Experimentally measured phase maps at Vx = 7.2485 with sextupole 
strength ~;:l = -6.0 m-2 

An interesting phenomenon IS that phase points move into the center even for 
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the case where particles were initially captured in the island. Figure 4 is one of the 
measured sets of data with the same conditions as in Figure 2. We first took data 
for 4000 turns as shown in Figure 4(a). A half minute later we took data again 
without kicking beam and we got Figure 4(b). Many repeated measurements showed 
the same results. It is understood that particles captured in the islands diffuse out 
slowly and damp toward the origin. This will be studied further in detail at a future 
experimental run. 
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Figure 4: Resonance island and diffusion 

4 Simulation 

The numerical tracking of a single particle through the Aladdin lattice confirms the 
theory presented in Section 2 but does not match exactly the measured results in 
Figures 3 and 4 because experimental results represent the centroid of the beam 
bunch containing about 1010 electrons which spread out in a sizable area of phase 
space. Due to the amplitude dependence of the tunes, particles lose their coherence 
and spread over the phase space in such a way that the beam centroid exhibits an 
entirely different motion. 

A fast tracking code is written to simulate particle behavior under the influence 
of the nonlinear magnetic force. This code basically uses the following algebraic 
transformation: 

x j cos rPxj + PXj si n rPxj , 

-Xj sin rPxj + PX] cos rPxj + f:>..Pxj , (13) 
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where X = xl $x and Px = (fJxPx + CYxx)1 $x. Nonlinear field effects are included 
in the code as nonlinear kicks /::;.Px given by 

/::;.P = _ IofJ /::;.Bx£ 
x V f-'x Bp , (14) 

where the multipole field /::;.Bx is given by 

(15) 

Only normal sextupoles and octupoles are included in the code. Using this transfor­
mation, one can track the particle motion from one nonlinear element to the next. 
The lattice parameters are extracted from the program COMFORT. 

The driving sextupole strength is set to the same value as the experiment setting. 
An average octupole field has been added to simulate the contribution of the magnet 
edge field. It brings the amplitude-dependent tune shift into agreement with the ob­
served value. Since we only calculate 4000 turns, the quantum fluctuation excitation 
and RF acceleration damping do not contribute and hence they are not included. 

To simulate the beam, 100 particles are tracked and the centoid motion of the 
particles is plotted in the phase space map. Initially the beam is represented by 
a Gaussian distribution in the X and Px phase space with (J"x = 0.82 mm, which 
is generated by a random number generator. The coordinates of the centroid are 
calculated after each turn. 
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Figure 5: Illustration at vx = 7.2485 with sextupole strength ~~l = -6.0 m-2 and 

octupole strength B~~l = -300.0 m-2 
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Figure 5 (a) shows a single particle tracking. Several phase trajectories are 
plotted together. Figure 5 (b) illustrates a Gaussian distributed beam when it is 
kicked into an island. Due to the finite beam size, some particles are located outside 
the island. 
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Figure 6: Simulation results for 100 particles at Vx = 7.2485 with sextupole strength 
~~l = -6.0 m-2 and octupole strength B~~l = 300 m-3 

Figure 6 shows several phase plots of beam centoid motion with different initial 
values as labelled on each plot. The first plot corresponds to Figure 3 (a) with most 
particles initially located inside the central stable region; the second plot is similar to 
Figure 3 (b) in which most particles are kicked into the island. In the third plot the 
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beam is kicked close to the island stable point and the last plot corresponds to Figure 
3 (d) with most particles over kicked outside the island. Due to the decoherence, the 
oscillatory beam centoid motion eventually damps to four stable spots in the phase 
space. Beware that those four spots are not the fixed stable points as defined in 
Section 2. As we see in Figure 6, the beam trajectories in the phase space are in 
agreement with the measurements and show all the observed features with roughly 
correct magnitudes. 

5 Conclusion 

We have measured the motion of the electron beam near the fourth-integral resonance 
4vx = 29 in the Aladdin ring under the second-order effect of the driving sextupole. 
The general features of the single particle dynamics are semi-quantitatively confirmed 
by the measurement. Exact agreement between analysis and measurement is difficult 
because of the unknown errors in the ring and the large beam emittance. Computer 
simulation using multi-particle tracking shows a good agreement with measurements 
and thus confirms the validity of the analytical and numerical treatments of the 
nonlinear motion near the fourth-integral resonance. 

The measurements also show that the radiation damping and excitation effects 
are important factors in the 1 minute time scale near the fourth-integral resonance. 
These and other stochastic effects cause the particles to diffuse out of the stable 
islands into the central stable region. A further experiment is being planned to study 
this phenomenon in detail. 
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Appendix A Hamiltonian Formalism 

The Hamiltonian treatment for the fourth-integral resonance driven by sextupoles is 
presented below for reference. 

After the Floquet transformation, the Fourier expansion, and the Moser trans­
formation, we obtain the Hamiltonian in the following form 

H = vxJx + I2J; I:[A3n cos q3n + 3AIn cos qIn] 
n 

where IX and Jx are action-angle variables, and 

q3n = 31x - nO + a3n 

qin = IX - nO + aln 
A eiC<3n = '" S ·eiC3,px-3vx+nB)j 3n ~ J , 

J 

AlneiC<ln = I: sjeiC,px-vx+nB)) , 

J 

s. = (BII1(3~/2) 
J 481fBp.' 

J 

(AI) 

(A2) 

and 0 = .!fi., n is the circumferential harmonic number, and EJ;~1 is the sextupole 
strength. The above equation can be rewritten as 

H = 

where 

QI = 61x - (n + n')O + (a3n + a3n/), 

QlO = (n - n')O -+ (a3n - a3n')' 

Q2 = 2/x - (n -+ n')B + (aln + aI n')' 

Q20 = -(n n')O -+ (aln - aIn')' 

Q3 = 4/x - (n -+ n')O + (a3n + aIn l ), 

Q4 = 2/x - (n - n')O + (a3n - aIn l ), 

Qs 4fx - (n + n')O + (a3n' + aI n)' 

Q6 = 2/x - (n n')O + (0:3n' - O'17J. 
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To remove those non-dominant terms, we assume a generating function 

n,n' 

+G4n sin Q4 + GSn sin Qs + G6n sin Q6] 

+ ISJ; I:: [GlOn sin QlO + G20n sin Q20], (A5) 

where parameters Gqn are adjusted to make the non-dominant terms vanish. From 
the generating function, we obtain new variables I ,L given by 

-'-$ 

and 

+4G3n cos Q3 + 2G4n cos Q4 + 4Gsn cos Qs + 2G6n cos Q6], 

1x :~ = Ix + 36L I::[Gln sin Q1 + G2n sin Q2 + G3n sin Q3 
.:::::-x n,n' 

aG 
ao 

+G4n sin Q4 + GSn sin Qs G6n sin Q6] 

+36L I:: [GlOn sin QlO + G2nO sin Q20], 

ISJ; I::[-(n + n')G1n cos Q1 - (n + n')G2n cos Q2 
n,n' 

-(n + n')G3n cos Q3 - (n - n')G4n cos Q4 - (n' + n)Gsn cos Qs 

(n' - n )G6n cos Q6J + ISg I) -( n - n')GlOn cos QlO 
n,n' 
n:;f.n' 

The new Hamiltonian has the form 
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[3A1nA
3n

l 
((' ) ( )G] Q} + - n - n - 2vx 6n COS 6 

n' - 3vx 

+18J; 2: [ A~n + 3Ain]. 
n n - 3vx n - Vx 

(A8) 

In this general Hamiltonian, we are only interested in those terms related to the 
fourth-integral resonance. To make the non-dominant terms vanish, we set 

(A9) 

and 
G3n = 0, GSn = 0. (A10) 

The explicit expression of the Hamiltonian for the fourth-integral resonance can now 
be written as 

(All) 

Using Eq. (A2) and the constraint of n + n' = m (resonance harmonic), we can write 
the second term of the above equation as 

2 { [e i [3,,0x j l +VJXj2-3VxBjl-VxBj2+mBjl +n'(Bj2- Bjl)] 

(2nd term) = 18Jx Re 2: Sj1 S j22: -------,-------

j1,j2 n' n - [Ix 

(A12) 

To simplify the expression, we use the following equality, 

00 ei(nB+b) { 

2: = 
n=-oo n - v 

__ 7f_e i [b+ v (O-7f)] 
sin1fv ) o < 0 < 2IT 

(A 13) 
-IT cot lTV eib , 
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Thus we have 

(2nd term) = I8J;Re {.L Sj1 Sj2 [ 

)1,)2 

. 7f e i (4'Yx - m B+SJ) _ . 37f ei(4'Yx-me+S2)] } , 
SlIl7fVx Sln37fvx 

(AI4) 

where 

81 31/Jxj1 + 1/Jxj2 - 4Ex Oj1 - 7fVx , 

82 = 31/Jxjl + 1/Jxj2 - 4Ex Oj2 - 37fvx · (AI5) 

A little more algebraic work leads finally to the Hamiltonian given in Eq. (2), 

(A16) 

where 

(AI7) 

and 

(AI8) 
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